Transfinite combinators and admissible ordinals
I’m back with another topic concerning ordinals! The transfinite combinator calculus The transfinite combinator calculus is an extension of normal combinator calculus. We define several related concepts as follows: If an expression \(x\) is beta-reducible, then \(\operatorname{cof}(x)=\operatorname{cof}(\operatorname{reduce}(x))\) and \(x[\alpha]=\operatorname{reduce}(x)[\alpha]\). If \(y\) is a limit, then \(\operatorname{cof}(xy)=\operatorname{cof}(y)\) and \((xy)[\alpha]=x(y[\alpha])\). If \(x\) is a limit, \(y\) is […]
Transfinite combinators and admissible ordinals Read More »